Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell

نویسندگان

  • M. R. Balme
  • V. Rocchi
  • C. Jones
  • P. R. Sammonds
  • P. G. Meredith
  • S. Boon
چکیده

A sound knowledge of mechanical properties of rocks at high temperatures and pressures is essential for modelling volcanological problems such as fracture of lava flows and dike emplacement. In particular, fracture toughness is a scale invariant material property of a rock that describes its resistance to tensile failure. A new fracture mechanics apparatus has been constructed enabling fracture toughness measurements on large (60mm diameter) rock core samples at temperatures up to 750°C and pressures up to 50 MPa. We present a full description of this apparatus and, by plotting fracture resistance as a function of crack length, show that the size of the samples is sufficient for reliable fracture toughness measurements. A series of tests on Icelandic, Vesuvian and Etnean basalts at temperatures from 30-600C and confining pressures up to 30 MPa gave fracture toughness values between 1.4 and 3.8 MPam. The Icelandic basalt is the strongest material and the Etnean material sampled from the surface crust of a lava flow the weakest. Increasing temperature does not greatly affect the fracture toughness of the Etnean or Vesuvian material but the Icelandic samples showed a marked increase in toughness at around 150C, followed by a return to ambient toughness levels. This material also became tougher under moderate confining pressure but the other two materials showed little change in toughness. We describe in terms of fracture mechanics probable causes for the changes in fracture toughness and compare our experimental results with values obtained from dike propagation modelling found in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Investigation of Rock Dynamic Fracture

Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental...

متن کامل

Effects of temperature and confining pressure on mode II fracture toughness of rocks (Case study: Lushan Sandstone)

The fracture mechanics examines the development and expansion of cracks in solids and how they affect the deformation of materials. The stress intensity factors at the tip of the crack and the critical stress intensity factors or fracture toughness of materials are considered in the relevant criteria. There are three main modes of applying forces to a crack including the tensile mode, shear mod...

متن کامل

A new brittleness index for estimation of rock fracture toughness

Assessment of the correlation between rock brittleness and rock fracture toughness has been the subject of extensive research works in the recent years. Unfortunately, the brittleness measurement methods have not yet been standardized, and rock fracture toughness cannot be estimated satisfactorily by the proposed indices. In the present study, statistical analyses are performed on some data col...

متن کامل

Effect of Rock Fracture Filling on Mode I and II Fracture Toughness

This paper focuses on some fracture toughness tests performed on the pre-cracked Brazilian specimens of rock-like materials. Also the effect of rock fracture filling on the fracture toughness was considered experimentally.  Fracture toughness is a key parameter for studying the crack propagation and fragmentation processes in rock structures. Fracture mechanics is an applicable tool to improve ...

متن کامل

Effects of number of freeze-thaw cycles and freezing temperature on mode I and mode II fracture toughness of cement mortar

Natural and artificial materials including rocks and cement-based materials such as concrete and cement mortar are affected both physically and chemically by various natural factors known as weathering factors. The freeze-thaw process, as a weathering factor, considerably affects the properties of rocks and concrete. Therefore, the effect of the freeze-thaw process on the physical and mechanica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006